/* * Copyright 2012 ZXing authors * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ namespace ZXing.PDF417.Internal.EC { /// <summary> /// <p>PDF417 error correction implementation.</p> /// <p>This <a href="http://en.wikipedia.org/wiki/Reed%E2%80%93Solomon_error_correction#Example">example /// is quite useful in understanding the algorithm.</p> /// <author>Sean Owen</author> /// <see cref="ZXing.Common.ReedSolomon.ReedSolomonDecoder" /> /// </summary> public sealed class ErrorCorrection { private readonly ModulusGF field; /// <summary> /// Initializes a new instance of the <see cref="ErrorCorrection"/> class. /// </summary> public ErrorCorrection() { this.field = ModulusGF.PDF417_GF; } /// <summary> /// Decodes the specified received. /// </summary> /// <param name="received">received codewords</param> /// <param name="numECCodewords">number of those codewords used for EC</param> /// <param name="erasures">location of erasures</param> /// <param name="errorLocationsCount">The error locations count.</param> /// <returns></returns> public bool decode(int[] received, int numECCodewords, int[] erasures, out int errorLocationsCount) { ModulusPoly poly = new ModulusPoly(field, received); int[] S = new int[numECCodewords]; bool error = false; errorLocationsCount = 0; for (int i = numECCodewords; i > 0; i--) { int eval = poly.evaluateAt(field.exp(i)); S[numECCodewords - i] = eval; if (eval != 0) { error = true; } } if (!error) { return true; } ModulusPoly knownErrors = field.One; if (erasures != null) { foreach (int erasure in erasures) { int b = field.exp(received.Length - 1 - erasure); // Add (1 - bx) term: ModulusPoly term = new ModulusPoly(field, new int[] {field.subtract(0, b), 1}); knownErrors = knownErrors.multiply(term); } } ModulusPoly syndrome = new ModulusPoly(field, S); //syndrome = syndrome.multiply(knownErrors); ModulusPoly[] sigmaOmega = runEuclideanAlgorithm(field.buildMonomial(numECCodewords, 1), syndrome, numECCodewords); if (sigmaOmega == null) { return false; } ModulusPoly sigma = sigmaOmega[0]; ModulusPoly omega = sigmaOmega[1]; if (sigma == null || omega == null) { return false; } //sigma = sigma.multiply(knownErrors); int[] errorLocations = findErrorLocations(sigma); if (errorLocations == null) { return false; } int[] errorMagnitudes = findErrorMagnitudes(omega, sigma, errorLocations); for (int i = 0; i < errorLocations.Length; i++) { int position = received.Length - 1 - field.log(errorLocations[i]); if (position < 0) { return false; } received[position] = field.subtract(received[position], errorMagnitudes[i]); } errorLocationsCount = errorLocations.Length; return true; } /// <summary> /// Runs the euclidean algorithm (Greatest Common Divisor) until r's degree is less than R/2 /// </summary> /// <returns>The euclidean algorithm.</returns> private ModulusPoly[] runEuclideanAlgorithm(ModulusPoly a, ModulusPoly b, int R) { // Assume a's degree is >= b's if (a.Degree < b.Degree) { ModulusPoly temp = a; a = b; b = temp; } ModulusPoly rLast = a; ModulusPoly r = b; ModulusPoly tLast = field.Zero; ModulusPoly t = field.One; // Run Euclidean algorithm until r's degree is less than R/2 while (r.Degree >= R / 2) { ModulusPoly rLastLast = rLast; ModulusPoly tLastLast = tLast; rLast = r; tLast = t; // Divide rLastLast by rLast, with quotient in q and remainder in r if (rLast.isZero) { // Oops, Euclidean algorithm already terminated? return null; } r = rLastLast; ModulusPoly q = field.Zero; int denominatorLeadingTerm = rLast.getCoefficient(rLast.Degree); int dltInverse = field.inverse(denominatorLeadingTerm); while (r.Degree >= rLast.Degree && !r.isZero) { int degreeDiff = r.Degree - rLast.Degree; int scale = field.multiply(r.getCoefficient(r.Degree), dltInverse); q = q.add(field.buildMonomial(degreeDiff, scale)); r = r.subtract(rLast.multiplyByMonomial(degreeDiff, scale)); } t = q.multiply(tLast).subtract(tLastLast).getNegative(); } int sigmaTildeAtZero = t.getCoefficient(0); if (sigmaTildeAtZero == 0) { return null; } int inverse = field.inverse(sigmaTildeAtZero); ModulusPoly sigma = t.multiply(inverse); ModulusPoly omega = r.multiply(inverse); return new ModulusPoly[] { sigma, omega }; } /// <summary> /// Finds the error locations as a direct application of Chien's search /// </summary> /// <returns>The error locations.</returns> /// <param name="errorLocator">Error locator.</param> private int[] findErrorLocations(ModulusPoly errorLocator) { // This is a direct application of Chien's search int numErrors = errorLocator.Degree; int[] result = new int[numErrors]; int e = 0; for (int i = 1; i < field.Size && e < numErrors; i++) { if (errorLocator.evaluateAt(i) == 0) { result[e] = field.inverse(i); e++; } } if (e != numErrors) { return null; } return result; } /// <summary> /// Finds the error magnitudes by directly applying Forney's Formula /// </summary> /// <returns>The error magnitudes.</returns> /// <param name="errorEvaluator">Error evaluator.</param> /// <param name="errorLocator">Error locator.</param> /// <param name="errorLocations">Error locations.</param> private int[] findErrorMagnitudes(ModulusPoly errorEvaluator, ModulusPoly errorLocator, int[] errorLocations) { int errorLocatorDegree = errorLocator.Degree; int[] formalDerivativeCoefficients = new int[errorLocatorDegree]; for (int i = 1; i <= errorLocatorDegree; i++) { formalDerivativeCoefficients[errorLocatorDegree - i] = field.multiply(i, errorLocator.getCoefficient(i)); } ModulusPoly formalDerivative = new ModulusPoly(field, formalDerivativeCoefficients); // This is directly applying Forney's Formula int s = errorLocations.Length; int[] result = new int[s]; for (int i = 0; i < s; i++) { int xiInverse = field.inverse(errorLocations[i]); int numerator = field.subtract(0, errorEvaluator.evaluateAt(xiInverse)); int denominator = field.inverse(formalDerivative.evaluateAt(xiInverse)); result[i] = field.multiply(numerator, denominator); } return result; } } }